The Crystal Structure of Dimethylammonium Copper(II) Formate, $\mathbf{N H}_{2}\left(\mathrm{CH}_{3}\right)_{2}\left[\mathrm{Cu}(\mathbf{O O C H})_{3}\right]$

By Einar Sletten* and Lyle H. Jensen
Department of Biological Structure, University of Washington, Seattle, Washington 98195, U.S.A.

(Received 23 March 1973; accepted 26 March 1973)

Abstract

The crystal structure of dimethylammonium copper(II) formate has been determined by single-crystal X-ray structural analysis. The crystals are monoclinic, space group $I 2 / c$, with $a=11.4204$ (5), $b=$ 8.7139 (5), $c=8.8502$ (5) $\AA, \beta=96.247(5)^{\circ}$. Data were collected on a Picker four-circle diffractometer with Nb -filtered Mo $K \alpha$ radiation. The structure was refined by full-matrix least squares to $R=0.017$. The copper ion is situated at a center of symmetry surrounded by six formate ions. The equatorial $\mathrm{Cu}-\mathrm{O}$ bonds are 1.969 and $1.971 \AA$ and the axial $\mathrm{Cu}-\mathrm{O}$ bonds $2.492 \AA$. The formate ions act as bridges between copper atoms forming an infinite anti-anti chain through the crystal. There are two crystallographically independent formate ions, one of which is located on a twofold axis. The $\mathrm{C}-\mathrm{O}$ bonds in the formate ion in the general position are slightly different, 1.240 and $1.253 \AA$. The $\angle \mathrm{O}-\mathrm{C}-\mathrm{O}$ is $124 \cdot 39^{\circ}$. In the formate ion with crystallographically required twofold symmetry the corresponding dimensions are 1.247 and 1242.4°. The dimethylammonium ion is also located on a twofold axis, with $\mathrm{C}-\mathrm{N}$ bonds of $1.467 \AA$.

Introduction

The neutral copper(II) formate complex appears in a variety of modifications, several of which have been investigated by X-ray crystallographic methods. Copper(II) formate tetrahydrate is found in an anti-anti configuration (II) (Kiriyama, Ibamoto \& Matsuo, 1954), the anhydrous compound has an anti-syn arrangement (III) (Barclay \& Kennard, 1961) and the dihydrate is found both as anti-anti and anti-syn in the same crystal (Bukowska-Strzyzewska, 1965).

In a copper formate monourea adduct (Yawney \& Doedens, 1970) the configuration is syn-syn (I) as in most higher alkanates of copper(II). Several factors may be considered to explain the variety of configurations exhibited by copper formate in the solid state. Martin \& Waterman (1959) have suggested that ligands which most effectively reduce the residual charge on the copper ion may favour a syn-syn structure. This may account for the syn-syn configuration in the mono-adduct where the basic ligand reduces the charge on copper. However, in copper formate dihydrate the copper ions surrounded by six formate groups are bridged anti-anti while the copper ions coordinated by two formate groups and four water

[^0]molecules are connected anti-syn. To assess the importance of packing effects in this scheme more structural data are needed.

Experimental

The present compound was formed during the recrystallization of a copper-hypoxanthine chloro complex from N, N-dimethylformamide. Usually the amide does not undergo hydrolysis without drastic heating in concentrated acidic or basic solution. Apparently the copper ions in some way catalyze this reaction.

Turquoise crystals were obtained from the yellow copper hypoxanthine formamide solution after slow evaporation for several weeks. The space group was determined from Weissenberg films as Ic or $I 2 / c$. The density was measured by flotation in a mixture of chloroform and tetrabromoethane. Accurate cell dimensions were obtained from a least-squares treatment of the 2θ settings of 17 reflections measured on a four-circle diffractometer.

Crystal data

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\left[\mathrm{Cu}(\mathrm{HCOO})_{3}\right]$	F.W. 244.7
$a=11.4204(5) \AA$	
$b=8.7139(5)$	
$c=8.8502(5)$	
$\beta=96.247(5)^{\circ}$	
$D_{m}=1.90 \mathrm{~g} \mathrm{~cm}^{-3}$	$D_{x}=1.86 \mathrm{~g} \mathrm{~cm}^{-3}$
$Z=4, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA$,	$\mu=25.9 \mathrm{~cm}^{-1}$

The crystal used for data collection had an irregular wedge shape with approximate dimensions $0.11 \times 0 \cdot 16$ $\times 0.22 \mathrm{~mm} .1009$ unique reflections $\left(2 \theta \leq 60^{\circ}\right)$ were measured on a manually operated four-circle diffractometer with niobium-filtered Mo $K \alpha$ radiation. Of these, 48 reflections were less than the threshold value
of $2 \sigma_{c}$, where $\sigma_{c}=\left(N_{B 1}+B_{p k}+N_{B 2}\right)^{1 / 2} . N_{p k}$ is the number of counts in the scan and $N_{B 1}$ and $N_{B 2}$ are the background counts.

During the data collection three standard reflections were measured every four hours to check the stability of the crystal and the electronics. A slight deterioration of the crystal was observed (Fig. 1). The fluctuation of the intensities of the standard reflections indicated that the X-ray source and detecting circuitry were stable to within 1%. Thus the total error assigned to the net intensity of each reflection is

$$
\sigma_{l}=\left[\sigma_{c}^{2}+\left(0 \cdot 01 \sigma_{c}^{2}\right)^{2}\right]^{1 / 2}
$$

The data were corrected for Lorentz and polarization effects. In the final stage of refinement absorption and extinction corrections were also applied.

Structure determination

A sharpened Patterson synthesis showed the heavy atom to be located at a centre of symmetry $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. Structure-factor calculations based on this position

Fig. 1. The average fluctuations of standard reflections 080 , 600,415 measured every four hour.

> (a)
> (b)

Fig. 2(a) The variation in intensity of $h 00$ reflections $v s .2 \theta$ at $\chi=90^{\circ}$. (b) The variation in intensity of reflection 600 and $14,0,0$ vs. φ at $\chi=90^{\circ}$.
gave an R of $0.45\left(R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|\right)$. At the initial stage of the analysis the compound was assumed to be a copper complex of hypoxanthine. However, the first Fourier synthesis did not reveal any purine rings. Instead six separate three-atom groups were found coordinating to copper. Two of these groups were located on twofold axes giving one and a half ligand in the asymmetric unit. From the heights of the peaks in the Fourier map one carbon and two oxygen atoms were assigned as constituents of each three-atom group. Three cycles of least-squares refinement reduced R to 0.18 and the isotropic temperature factors were reasonable, corroborating the assumption that the ligands were formate ions. A difference map at this stage showed an additional three-atom group of atoms around the twofold axis, and not knowing the chemical composition of the compound we tentatively included another formate group in the refinement. Chemically, of course, this model cannot be correct. However, the refinement with isotropic temperature factors converged at $R=0 \cdot 10$ and a few additional cycles with anisotropic temperature factors decreased R to $0 \cdot 042$.

At this low R value the thermal parameters of the 'formate group' last added were unreasonably low for carbon ($B=1.8 \AA^{2}$) and too high for oxygen ($B=$ $6 \cdot 0 \AA^{2}$). Moreover, the $\mathrm{C}-\mathrm{O}$ distances were too long ($1.46 \AA$), and the 'goodness of fit' $\left[w\left(F_{0}-F_{o}\right)^{2} / m-n\right]^{1 / 2}$ was unusually high, $8 \cdot 5$.

From purely crystallographic considerations a dimethylammonium ion was substituted for the erroneous 'formate group'. In retrospect this assignment could have been made by considering the chemistry of the decomposition of N, N-dimethylformamide.

The dimethylammonium ion was included with isotropic temperature factors and during two refinement cycles the R decreased to 0.031 . The 'goodness of fit' was dramatically improved (3.8) suggesting that this quantity is more sensitive to errors in the model than R. Anisotropic thermal parameters for the nonhydrogen atoms in the DMA ion further improved R to 0.030 and the g.o.f. to 3.25 .

At this stage an empirical absorption correction was carried out. Since the crystal was quite irregular in

Table 1．Fractional atomic coordinates and thermal parameters and their estimated standard deviations（in parentheses）
Anisotropic temperature factor：$T_{i}=\exp \left[-\frac{1}{4}\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{33} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}+2 B_{13} h l a^{*} c^{*}+2 B_{23} k l b^{*} c^{*}\right)\right]$.

	x / a	y / b	z / c	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Cu	$0 \cdot 25000$	$0 \cdot 25000$	$0 \cdot 25000$	$0 \cdot 82$（1）	2.06 （1）	1.45 （1）	$0 \cdot 164$（5）	-0.123 （7）	-0.354 （6）
$\mathrm{O}(1)$	0.40315 （7）	$0 \cdot 14722$（10）	$0 \cdot 24419$（11）	1.07 （3）	2.07 （3）	2.76 （4）	0.01 （2）	0.09 （3）	-0.13 （3）
O（2）	0.32206 （9）	$0 \cdot 51685$（11）	0.62594 （12）	$2 \cdot 37$（4）	$2 \cdot 50$（4）	2.34 （4）	$0 \cdot 22$（3）	－0．38（4）	－0．62（3）
$\mathrm{O}(3)$	$0 \cdot 31088$（8）	$0 \cdot 33920$（11）	0.44750 （11）	2.04 （4）	$2 \cdot 82$（4）	1.95 （4）	0.55 （3）	－0．38（3）	－0．54（3）
C（1）	$0 \cdot 50000$	$0 \cdot 21403$（21）	0.25000	$1 \cdot 34$（6）	1.70 （6）	$1 \cdot 66$（6）	0.0	-0.08 （5）	$0 \cdot 0$
C（2）	$0 \cdot 27831$（12）	$0 \cdot 46226$（16）	$0 \cdot 50318$（15）	$1 \cdot 66$（5）	$2 \cdot 11$（5）	$2 \cdot 11$（5）	-0.03 （4）	－0．24（4）	$0 \cdot 06$（4）
C（3）	0.55813 （20）	$0 \cdot 77864$（24）	$0 \cdot 14183$（23）	$3 \cdot 67$（9）	$3 \cdot 69$（7）	2.97 （7）	-0.28 （7）	1.04 （7）	-0.30 （6）
N	$0 \cdot 50000$	0.68522 （20）	$0 \cdot 25000$	1.96 （7）	$2 \cdot 24$（7）	2.75 （7）	$0 \cdot 0$	－0．54（6）	$0 \cdot 0$
H（1）	$0 \cdot 5000$	$0 \cdot 3232$（33）	$0 \cdot 2500$	$2 \cdot 9$（5）					
H（2）	$0 \cdot 2160$（17）	$0 \cdot 5188$（21）	0.4418 （23）	$3 \cdot 1$（4）					
H（3）	$0 \cdot 6106$（22）	0.8323 （28）	$0 \cdot 1969$（31）	$5 \cdot 5$（6）					
H（4）	0.4989 （18）	0.8353 （25）	0.0909 （24）	$4 \cdot 0$（5）					
H（5）	0.5839 （20）	$0 \cdot 7140$（29）	0.0813 （27）	$4 \cdot 8$（6）					
H（6）	0.4482 （18）	0.6339 （23）	$0 \cdot 1997$（25）	$4 \cdot 2$（5）					

Table 2．Observed and calculated structure factors $(\times 10)$
The reflections with observed intensity less than the threshold value of $2 \sigma_{c}$ are marked with $<$ signs．

気涊

：

商

shape, it was difficult to determine an adequate description of the boundary planes required in the usual ab-sorption-correction procedure. The crystal was mounted along \mathbf{a}^{*} and the variation in I_{o} / I vs. φ at $\chi=90^{\circ}$ was recorded and is shown in Fig. 2(b). Inclusion of the φ-dependent absorption correction decreased R to $0 \cdot 018$.
The data were corrected for secondary extinction according to the method described by Zachariasen (1963). The g value in the expression $I=I_{o}\left(1+2 g I_{c}\right)$ was found to be $1 \cdot 1 \times 10^{-7}$. The correction gave only a slight improvement in R.

A plot of I_{o} / I vs. 2θ, Fig. 2(a), shows an approximate linear variation of the absorption correction in addition to the usual φ vatiation. This trend was confirmed by a plot of $w . \Delta F v s$. 2θ. Accordingly, an additional correction was made based on the linear relation $I_{o} / I v s .2 \theta$ obtained for the reflections $400-14,0,0$ and modified by a $\sin \chi$ factor which accounts approximately for the variation in absorption in the region $\chi=0-90^{\circ}$.

After three more refinement cycles the shifts in parameters for nonhydrogen atoms were less than 0.01σ and for hydrogen atoms less than 0.03σ. The final $R=0.017$ and the g.o.f. $1 \cdot 61$. A difference map showed residual electron densities of approximately $0.26 \mathrm{e} \AA^{-3}$ in the middle of each of the $\mathrm{Cu}-\mathrm{O}$ bonds

Fig. 3. Bond lengths and angles in the copper(II) formate complex. The nonhydrogen atoms are represented by thermal ellipsoids defined by the principal axes of thermal vibration and scaled to include 50% probability. The isotropic thermal spheres of the hydrogen atoms are scaled down by a factor of four.
and a correspondingly negative density at the copper site.

Final coordinates and thermal parameters are listed in Table 1. The observed and calculated structure factors are given in Table 2. Atomic scattering curves for the heavier atoms were obtained from International Tables for X-ray Crystallography (1962), and those for the hydrogen atoms were from Stewart, Davidson \& Simpson (1965).

Results and discussion

The copper ion located at a center of symmetry has octahedral coordination with four short equatorial and two long axial $\mathrm{Cu}-\mathrm{O}$ bonds (Fig. 3). This arrangement is often found in copper complexes where the metal occupies a special position in the unit cell. In complexes with no crystallographic restrictions the regular, elongated octahedra is rarely found.

Since the structure is determined with high precision some molecular details not usually discernible in heavyatom structures, can be pointed out. The formate ion in the general position is asymmetric with the oxygen in the long C-O bond ($1.253 \AA$) coordinated equatorially, $\mathrm{Cu}-\mathrm{O}=1.969 \AA$ and the oxygen in the short $\mathrm{C}-\mathrm{O}$ bond ($1 \cdot 240 \AA$) coordinated axially, $\mathrm{Cu}-\mathrm{O}=$ $2 \cdot 491 \AA$.
The formate ion located on the twofold axis has $\mathrm{C}-\mathrm{O}$ bond lengths of $1 \cdot 246 \AA$ and is coordinated equatorially with $\mathrm{Cu}-\mathrm{O}=1.971 \AA$. Thus at the three crystallographically nonequivalent coordination sites a long $\mathrm{Cu}-\mathrm{O}$ bond corresponds to a short $\mathrm{C}-\mathrm{O}$ bond and vice versa. This so-called trans effect is much less pronounced in complexes of transition metals than in complexes with central atoms such as Se and Te .

The dimethylammonium ion is located on a twofold axis and hydrogen bonded to the axial formate oxygen, O (2). The unusually long axial $\mathrm{Cu}-\mathrm{O}(2)$ bond may be a result of the hydrogen bonding. The methyl group of the ion is well defined but deviates somewhat from regular $s p^{3}$ symmetry. The three $\mathrm{C}-\mathrm{H}$ bond lengths are 0.88 (3), 0.89 (3), and 0.91 (3) \AA, and the three $\mathrm{N}-\mathrm{C}-\mathrm{H}$ angles are 106 (2), 106 (2), and 107 (2) $)^{\circ}$. The consistent deviations in bond lengths and angles from the values usually found by X-ray methods appear to be significant.

The arrangement of atoms in the crystal is shown in Fig. 4. The copper ions related by twofold axes and screw axes are bridged by formate groups forming a three-dimensional network. The two types of bridges are both in the anti-anti configuration. Theoretically a syn-syn configuration would give a denser crystal packing and enhance the proposed super-exchange between the metal centers. Thus, the reason for the adopted anti-anti arrangement remains uncertain.

The authors gratefully acknowledge financial support for this work under USPHS Grant AM-3288 from the National Institutes of Health.

Fig. 4. A stereoscopic view of the molecular packing in the unit cell of dimethylammonium copper(II) formate.

References

Barclay, G. A. \& Kennard, C. H. L. (1961). J. Chem. Soc. pp. 3289-3294.
Bukowska-Strzyzewska, M. (1965). Acta Cryst. 19, 357362.

International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-204. Birmingham: Kynoch Press.

Kiriyama, R., Ibamoto, H. \& Matsuo, K. (1954). Acta Cryst. 7, 482-483.
Martin, R. L. \& Waterman, H. (1959). J. Chem. Soc. pp. 1359-1370.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Yawney, D. B. W. \& Doedens, R. J. (1970). Inorg. Chem. 9, 1626-1632.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

The Crystal and Molecular Structures of Reaction Products from $\boldsymbol{\gamma}$-Irradiation of Thymine and Cytosine: cis-Thymine Glycol, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$, and trans-1-Carbamoyl -imidazolidone-4,5-diol, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{4}$

By Judith L. Filppen
Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, D.C. 20375, U.S.A.

(Received 26 March 1973; accepted 27 March 1973)
As part of a study on the mutagenetic effects of ionizing radiation on nucleic acids, solutions of thymine and cytosine were subjected to γ-radiation. In both cases the reaction conditions were the same; however, the products differed significantly. The product of the thymine reaction was cis-thymine glycol (I), $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$ [space group $P 2_{1} 2_{1} 2_{1}$ with $a=9.745$ (6), $b=10.806$ (6), $c=6.282$ (4) \AA]. The reaction on the cytosine molecule involved a rearrangement of the six-membered ring to give an imidazolidone derivative (II), $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{4}$ [space group Pbca with $a=13 \cdot 228$ (8), $b=13 \cdot 260$ (8), $c=7 \cdot 139$ (4) \AA]. The calculated crystal densities are $1.61 \mathrm{~g} \mathrm{~cm}^{-3}$ for (I) and $1.71 \mathrm{~g} \mathrm{~cm}^{-3}$ for (II). Both structures were solved by the symbolic addition procedure. Intensities were collected on an automatic diffractometer ($\mathrm{Cu} K \alpha$ radiation) and refined to final R values of 0.052 for (I) and 0.064 for (II). Hydrogen bonding plays a significant role in the packing systems of both molecules.

Introduction

The radiation chemistry of the nucleic acid bases, thymine, cytosine and uracil, has been the subject of

extensive research in attempts to determine the molecular origin of biological radiation damage (Fahr, 1969). When solutions of thymine and cytosine were subjected to γ-radiation, under the same reaction con-

[^0]: * Present address: Chemical Institute, University of Bergen, N-5014 Bergen, Norway.

